Recipient cell nuclear factors are required for reprogramming by nuclear transfer.

نویسندگان

  • Dieter Egli
  • Kevin Eggan
چکیده

Nuclear transfer allows the reprogramming of somatic cells to totipotency. The cell cycle state of the donor and recipient cells, as well as their extent of differentiation, have each been cited as important determinants of reprogramming success. Here, we have used donor and recipient cells at various cell cycle and developmental stages to investigate the importance of these parameters. We found that many stages of the cell cycle were compatible with reprogramming as long as a sufficient supply of essential nuclear factors, such as Brg1, were retained in the recipient cell following enucleation. Consistent with this conclusion, the increased efficiency of reprogramming when using donor nuclei from embryonic cells could be explained, at least in part, by reintroduction of embryonic nuclear factors along with the donor nucleus. By contrast, cell cycle synchrony between the donor nucleus and the recipient cell was not required at the time of transfer, as long as synchrony was reached by the first mitosis. Our findings demonstrate the remarkable flexibility of the reprogramming process and support the importance of nuclear transcriptional regulators in mediating reprogramming.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-100: Improved Efficiency of Somatic Cell Nuclear Transfer in Sheep by Persecution of Recipient Oocytes with Brilliant Cresyl Blue Staining

Background: The most important factor affecting the efficiency of somatic cell nuclear transfer (SCNT) is the initial quality of the oocyte. Since the abattoir-derived oocytes are heterogeneous in quality, selection of cohort fully grown/competent oocytes is necessary for proper development of SCNT embryos. Materials and Methods: Glucose-6-phosphate dehydrogenase (G6PDH) is actively expressed i...

متن کامل

I-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer

Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...

متن کامل

I-5: Fifteen Years after Dolly: The Perspectives on Cellular Reprogramming

s:1202:"It is a truly amazing time to developmental biology. During recent decades, three important breakthroughs have been developed: (i) isolation of stem cells from embryo, (ii) animal cloning by nuclear transfer (NT), and (iii) and induced pluripotent stem cells (iPS). Considering these three approaches of "Cellular Reprogramming", it seems that the required elements for cell therapy now ex...

متن کامل

I-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline

Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...

متن کامل

Nuclear reprogramming in zygotes.

Nuclear reprogramming, the conversion of the epigenome of a differentiated cell to one that is similar to the undifferentiated embryonic state, can be facilitated by several methods, such as nuclear transfer, cell fusion, use of embryonic stem cell extracts, and more recently, by the introduction of exogenous transcription factors. Amongst these various strategies, somatic cell nuclear transfer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 137 12  شماره 

صفحات  -

تاریخ انتشار 2010